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Abstract—When done manually, refactoring legacy code in
order to eliminate uses of deprecated APIs is an error-prone and
time-consuming process. In this paper, we investigate to which
degree refactorings for deprecated Java APIs can be automated,
and quantify the benefit of Javadoc code hints for this task.
To this end, we build a symbolic and a neural engine for the
automatic refactoring of deprecated APIs. The former is based on
type-directed and component-based program synthesis, whereas
the latter uses LLMs. We applied our engines to refactor the
deprecated methods in the Oracle JDK 15. Our experiments show
that code hints are enabling for the automation of this task: even
the worst engine correctly refactors 71% of the tasks with code
hints, which drops to at best 14% on tasks without. Adding more
code hints to Javadoc can hence boost the refactoring of code
that uses deprecated APIs.

I. INTRODUCTION

As a project evolves, there are certain fields, methods or
classes that the developers are discouraged from using in the
future as they’ve been superseded and may cease to exist.
However, removing them directly would break the backward
compatibility of the project’s API. Instead, in Java, such
elements can be tagged with the @Deprecated annotation in
order to ease the transition.

The transformation of existing code such that it doesn’t use
deprecated APIs is not always straightforward, as illustrated in
Figure 1. In the example, we make use of the getHours method of
the Date class, which is deprecated. In this situation, in order to
replace the use of the deprecated method, we must first obtain a
Calendar object. However, we can’t use the Calendar constructor as
it is protected, and we must instead call getInstance . Furthermore,
in order to be able to use this Calendar object for our purpose,
we must first set its time using the existing date. We do this by
calling setTime with date as argument. Finally, we can retrieve
the hour by calling calendar . get (Calendar.HOUR OF DAY).

Another example, which is easy for humans but difficult
for automatic techniques, is the call to the static java . net .
URLDecoder.decode(s) method, which should be refactored to the
call decode(s , ”UTF−8”). However, this requires guessing the
“UTF-8” constant denoting a platform-specific string encoding
scheme, which is very difficult for automatic code generation
techniques, especially those using symbolic reasoning [1].

Besides general challenges related to automatic code gen-
eration, there are other language-specific ones. For instance,
the code to be refactored might be using abstract classes and

void main ( S t r i n g [ ] a r g s ) {
/ / Depreca ted :
i n t hour = d a t e . g e t H o u r s ( ) ;

/ / Shou ld have been :
f i n a l C a l e n d a r c a l e n d a r = C a l e n d a r . g e t I n s t a n c e ( ) ;
c a l e n d a r . s e tT ime ( d a t e ) ;
i n t hour = c a l e n d a r . g e t ( C a l e n d a r .HOUR OF DAY ) ;

}

Fig. 1: Deprecated method example.

abstract methods, and it may not be obvious how to subclass
from the code to be refactored (e.g. engineGetParameter in java
. security . SignatureSpi); it might call methods that, while not
abstract, need to be overridden by subclasses (e.g., method
layout in class java .awt.Component has an empty body); or it
might be calling native methods whose implementation is
written in another programming language such as C/C++ (e.g.,
weakCompareAndSet in java . util . concurrent .atomic.AtomicReference).
In order to even understand the behaviour of the code to
be refactored, one needs to know how to subclass the abstract
classes, override methods, and to understand the behaviour of
code written in other languages.

In this paper, we are interested in the automatic generation
of refactorings for deprecated APIs (while we focus on the
refactoring of deprecated methods, the same techniques can be
applied to deprecated fields and classes). In particular, we are
interested in investigating the benefits of Javadoc code hints
when automating such a refactoring.

When deprecating a field, method, or class, the @Deprecated
Javadoc tag is used in the comment section to inform the
developer of the reason for deprecation and, sometimes, what
can be used in its place. We call such a suggestion a code
hint. These hints don’t provide the entire refactoring, but can
be used to guide the search process. For illustration, let’s
look at our running example in Figure 1. The source code
for the getHours method in class Date is accompanied by the
comment in Figure 2, where the @code tag suggests replacing
the deprecated getHours by Calendar. get (Calendar.HOUR OF DAY).
Using this code hint is not straightforward. Although it may
seem as if method get is static, allowing an immediate call, it
is actually an instance method, and requires an object of class



/ *
* @deprecated As o f JDK v e r s i o n 1 . 1 ,
* r e p l a c e d by {@code Calendar . g e t
* ( Calendar . HOUR OF DAY ) } .
* /

Fig. 2: Code hints for the running example.

Calendar. However, no such object is available in the original
code, meaning that it must be created by the refactored code.
Consequently, we must find the necessary instructions that
consume existing objects and create a Calendar object. Besides
generating the required objects, we also need to set their fields.
For instance, in Figure 1, we must call calendar .setTime(date ) to
set the calendar’s date based on the existing date object.

In order to investigate the benefits of code hints when
automating the deprecated refactoring, we build two code
generation engines, namely a symbolic and a neural one.
For each, we selected approaches with proven success in
program synthesis, and that could also incorporate code hints. In
particular, for the symbolic engine, we make use of component-
based synthesis [2], [3], [4] and type-directed synthesis [5],
[6], [7]. Essentially, we use types and code hints to populate
a component library (i.e., a library of instructions), such that
these components are then weaved together to generate the
desired program. Given the recent success of Large Language
Models (LLMs) for code generation [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], the neural approach generates
candidate refactorings by iteratively querying an LLM – we
used Claude 2.1 and Claude 3 [19].

Our experiments show that code hints are critical for the
performance of both the symbolic and the neural engines:
when code hints are given, both engines perform very well,
making full automation of deprecated APIs refactorings feasible.
Without code hints, the refactoring becomes much harder for
both engines, such that the vast majority of benchmarks without
code hints are failing. Thus, our conclusion is that, in order
to facilitate the automation of the refactoring of client code
that uses deprecated APIs, code hints should be added to all
deprecated methods that have a replacement.

Comparing the symbolic and the neural approaches, code
hints help the symbolic approach to efficiently prune the
solution space, resulting in a better performance than the neural
engine at a lower monetary cost. We believe this is important
to note, especially as LLMs are often seen as a panacea for
all tasks, including code generation. This work shows that
symbolic methods can still be effective in specialised settings,
where efficient pruning of the solution space is possible.

a) Contributions:
• We propose a symbolic and a neural refactoring technique

for deprecated APIs. The former makes use of type-
directed and component-based synthesis, whereas the latter
is LLM based. In order to check the correctness of the
refactorings, we design a symbolic equivalence check,
which takes into consideration both the state of the stack
and the heap.

• We implement our techniques and use them to refactor
deprecated methods from the Oracle JDK 15 Deprecated
API documentation [20].

• We investigate the benefits of code hints for both the
symbolic and neural approach. Our results show that
code hints are critical for the performance of both the
symbolic and the neural engines: adding more code hints
to Javadoc can substantially help automate the refactoring
of deprecated APIs.

II. OUR APPROACH

In this section, we describe the two code generation engines.
For both approaches, we make use of a CounterExample
Guided Inductive Synthesis (CEGIS) [21] architecture, where
we iteratively attempt to improve a candidate refactoring until
it behaves indistinguishably from the original code, i.e., the
original and the refactored blocks of code are observationally
equivalent. In the rest of the paper, we will use the predicate
equivalent(P1(⃗i), P2(⃗i)) to denote that code P1 is observa-
tionally equivalent to P2 for inputs i⃗, meaning that the two
programs can’t be distinguished by their behaviour on inputs
i⃗. In general, we refer to the original code as P1 and the
refactored code as P2. We will fully define what equivalent
actually means in Section II-C.

In each iteration of the synthesis process, there are two
phases, a synthesis phase and a verification phase. The synthesis
phase generates a candidate refactoring that is equivalent to
the original code on a finite set of inputs. Then, the verification
phase tries to find a new counterexample input that distinguishes
between the current candidate refactoring and the original code.
If it manages, this input is added to the set of finite inputs used
by the next synthesis phase, and if it fails, then the current
candidate is indeed a solution refactoring.

A. Synthesis phase

In this phase, we have a finite set of input examples
{i⃗1 · · · i⃗n} and we attempt to find a candidate refactoring that
is observationally equivalent to the original code for the given
inputs.

a) Symbolic engine: We construct the following Synthesise
method, which takes the refactored code P2 as input.

S y n t h e s i s e (P2 ) {
i f ( e q u i v a l e n t (P1 ( i⃗1 ) , P2 ( i⃗1 ) ) && . . .

&& e q u i v a l e n t (P1 ( i⃗n ) , P2 ( i⃗n ) ) )
a s s e r t ( f a l s e ) ;

}

This method consists of only one conditional saying that if
P1 and P2 are equivalent on all given inputs i⃗1, · · · , i⃗n, then
assert ( false ) is reached. Given that this assertion always fails
if reached, it means that the method is unsafe when P1 and
P2 are equivalent on the given inputs. Thus, we can reduce
the synthesis problem to the problem of checking the safety
of Synthesise . If a safety checker manages to find an input P2

for which the assertion fails (meaning that Synthesise is unsafe),
then this P2 must be equivalent to P1 on the given inputs.



This P2 is the refactoring candidate that the synthesis phase
is supposed to generate.

We use an existing fuzz testing platform for Java, JQF [22],
as the safety checker. JQF is designed to handle structured
inputs, where inputs of type T are generated by a backing
Generator<T>. JQF provides a library of generators for basic
types such as primitive values. We implement custom JQF
generators based on a library of instructions built as explained
in Section III, enabling JQF to construct P2 by weaving together
instructions from the library.

If the safety checker fails to find a P2 for which the assertion
fails, then the overall synthesis technique fails to generate
a solution refactoring. There could be two reasons for this
situation, which we cannot differentiate between. Firstly, there
may indeed be no P2 that can be constructed with the available
components in the component library such that it is equivalent
to P1 on the given inputs. Secondly, this could be caused by
JQF’s unsoundness. Given that fuzzers rely on testing, they
may fail to find inputs that trigger unsafe behaviours even
when such inputs exist. Consequently, we cannot guarantee
that we will always find a refactoring whenever one exists. We
will provide more details about our decision to use fuzzing as
the safety checker in Section IV.

b) Neural engine: For each deprecated method, we query
the LLM by constructing a prompt as given in Figure 3. The
method definition and the JavaDoc comment (if present) are
provided as context. Furthermore, we provide a code snippet
of the use of the deprecated method that is to be refactored
(e.g., this .minimumSize();). Finally, we attach a list of formatting
constraints.

The code returned by the LLM is verified against the
original code. If the verification fails, we attach the set of
counterexamples generated by the fuzzing engine to subsequent
prompts. We apply object serialisation to obtain structured-
views of the input and output states. In addition to this, we
followed the prompting guidelines provided by Anthropic
Claude1 (e.g. using XML tags). Do note that, as opposed to the
symbolic approach, the LLM doesn’t give any guarantees that
the counterexamples were actually taken into consideration.

B. Verification phase

This is exactly the same for the two approaches. We are
provided with a candidate refactoring P2 and we must check
whether there exists any input i⃗ for which the original code
and the candidate refactoring are not observationally equivalent.
To do this, we build the following Verify method, which given
some input i⃗, asserts that the two programs are equivalent for
i⃗.

V e r i f y ( i⃗ ) { a s s e r t ( e q u i v a l e n t (P1 (⃗i) , P2 (⃗i) ) ) ; }

In other words, answering the question posed by the
verification phase is reduced to checking the safety of this
method: if Verify is safe (i.e., the assertion is not violated) for
any input i⃗, then there is no input that can distinguish between
the original code and the candidate refactoring (this is indeed a

1https://docs.anthropic.com/en/docs/prompt-engineering

Initial Prompt

User:
# Context
The method ${METHOD_NAME} of the class ${CLASS_NAME}
is deprecated. Below is the method definition:
${METHOD_DEFINITION}

Here are its Javadoc comments that may contain a
@deprecated tag explaining why the item has been
deprecated and suggesting what to use instead.
${JAVADOC_COMMENT}

However, I used this method call in my code base,
the code snippet is given below:
${CODE_SNIPPET}

# Instruction
Help me refactor this code snippet so that it
doesn’t use the deprecated method. Do not simply
inline the method body, use APIs suggested by the
Javadoc comments if there are any.

# Constraints
Take the following constraints into consideration:
${FORMATTING_CONSTRAINTS}

Subsequent Prompt

Additionally, here is a set of input/output examples
that you should respect,
${EXAMPLES}

Assistant:

Fig. 3: LLM Prompt Template.

sound refactoring). However, if Verify is not safe, then we want
to be able to obtain a counterexample input ⃗icex for which the
assertion fails. This counterexample will be provided back to
the synthesis phase and used to refine the current candidate
refactoring. Again, we check the safety of Verify with JQF.

In this section, we hid the complexity of the equivalence
check inside the equivalent predicate. This is far from trivial
as it requires handling of notions such as aliasing, loaded
classes, static fields etc. This will be described in detail next.

C. Checking program equivalence

A core part of the synthesis procedure is the
equivalent(P1(⃗i), P2(⃗i)) predicate, which checks that
the original code P1 and a candidate refactoring P2 are
equivalent for a given input i⃗. In this section, we provide
details on how we check this equivalence.

The state of a Java program is modelled by the current
program stack (consisting of method-specific values and
references to objects in the heap) as well as its heap (consisting
of instance variables and static field values). Static field values
are stored with their respective classes, which in turn are loaded
by class loaders. Our equivalence check must take all these into
consideration. One of the main challenges is aliasing, which
we will discuss later in the section.

We start by introducing some notation:
• loadedClasses(P) returns the set of classes loaded by the

class loader in which P is executed. Note that Java allows



to load the same class in different class loaders, which
creates independent copies of its static fields.

• liveVars(P) provides the set of variables that are live at
the end of P .

• staticFields(C ) returns the set of static fields of class C .
• exc(P, i⃗) returns the exception thrown by P ’s execution

on input i⃗.

Example 1. For our running example in Figure 1, P1 and P2

are represented by the following lines of code. Note that both
P1 and P2 take variable date as input.

/ / P1

i n t hour=d a t e . ge tHours ( ) ;

/ / P2

f i n a l Calendar c a l e n d a r=Calendar . g e t I n s t a n c e ( ) ;
c a l e n d a r . s e t T i m e ( d a t e ) ;
i n t hour=c a l e n d a r . g e t ( Calendar . HOUR OF DAY ) ;

Then, we have:

liveVars(P1 ) = {date, hour}
liveVars(P2 ) = {calendar, date, hour}

loadedClasses(P1 ) = {Date}
loadedClasses(P2 ) = {Calendar,Date}
staticFields(Date) = ∅

staticFields(Calendar) = {DATE, Y EAR, · · · }
exc(P1 , ) = exc(P2 , ) = ∅

In order to extract the (last) object assigned to a variable
v by the execution of P on a specific input i⃗, we will use
the notation E[P (⃗i)](v). Essentially, if we consider the trace
generated by executing P (⃗i), then E[P (⃗i)] maps each variable
defined in P to the last object assigned to it by this trace. Next,
we define the notion of equivalence with respect to a concrete
input i⃗ (this definition is incomplete and we will build on it
in the rest of the section). We overload equality to work over
sets (for live variables and loaded classes).

Definition 1 (Program equivalence with respect to a concrete
input i⃗ [partial]). Given two code blocks P1 and P2 and
concrete input i⃗, we say that P1 and P2 are equivalent with
respect to i⃗, written as equivalent(P1(⃗i), P2(⃗i)) if and only
if the following conditions hold:

(1) exc(P1, i⃗) = {e1} ∧ exc(P2, i⃗) = {e2} ∧ equals(e1, e2) ∨
exc(P1, i⃗) = exc(P2, i⃗) = ∅

(2) liveVar(P1) = liveVar(P2) ∧ ∀v ∈ liveVar(P1).

equals(E[P1 (⃗i)](v), E[P2 (⃗i)](v))

(3) loadedClasses(P1) = loadedClasses(P2) ∧
∀C ∈ loadedClasses(P1).∀f∈staticFields(C).

equals(E[P1 (⃗i)](f), E[P2 (⃗i)](f))

The above definition says that in order for P1 and P2 to be
equivalent with respect to input i⃗, (1) either they both throw
an exception and the two exceptions have the same type, or
none does, (2) the set of variables live at the end of P1 is
the same as the set of variables live at the end of P2 , and
must be assigned equal objects by the executions of P1 and
P2 on i⃗, respectively, and (3) the classes loaded by P1 must
be the same as the classes loaded by P2 , and all the static

fields in the classes loaded by both the class loaders of P1

and P2 must be assigned equal objects by the two executions,
respectively. In our implementation, if either the deprecated or
the refactored code didn’t load a class, we load it for it, and
check that the initial state of that class is the same for both
blocks of code.

Equality refers to value equality, which we check by
recursively following attribute chains until we reach primitive
types. We generally do not consider existing equals methods
unless (i) the method was not written by the user (i.e., JCL
classes), (ii) the type inherits from java . lang .Object, (iii) the class
implements java . lang .Comparable and (iv) the type declares an
equals implementation. Examples of classes that satisfy these
strict requirements are java . lang . Integer or java . util .Date. All
other implementations of equals are considered unreliable and
ignored.

Example 2. When applying Definition 1 to P1 and P2 given
in Example 1, the following conditions must hold (given that
class Date has no static fields, the third condition is trivial):

(1) exc(P1 ) = exc(P2 ) = ∅
(2) equals(E[P1 (⃗i)](hour), E[P2 (⃗i)](hour)) ∧

equals(E[P1 (⃗i)](date), E[P2 (⃗i)](date))

(3) Date ∈ {Date,Calendar}

The challenge of aliasing. When expressing the equivalence
relation between P1 and P2 , we intentionally missed one
important aspect, namely aliasing. To understand the problem
let’s look a the following example, which makes use of
java.awt.Container, where a generic Abstract Window Toolkit
(AWT) container object is a component that can contain other
AWT components. Method preferredSize used by the original
code below returns the preferred size of the calling container.
Method preferredSize is deprecated, and, instead, the refactored
version uses getPreferredSize .

Example 3.
/ / P3 :
Dimension dim1=c o n t a i n e r . p r e f e r r e d S i z e ( ) ;
Dimension dim2=c o n t a i n e r . p r e f e r r e d S i z e ( ) ;

/ / P4 :
Dimension dim1=c o n t a i n e r . g e t p r e f e r r e d S i z e ( ) ;
Dimension dim2=dim1 ;

We note that, the original code above defines two variables
dim1 and dim2 , each assigned an object of type Dimension

returned by calling container .preferredSize(). Conversely, in
the refactored code, dim1 and dim2 are aliases, i.e., they
point to the same object of type Dimension.

The original and the refactored code are equivalent ac-
cording to Definition 1. Let’s next assume that the following
code is used after both the original and the refactored code,
respectively.

dim1 . s e t S i z e ( 1 , 2 ) ;
dim2 . s e t S i z e ( 2 , 3 ) ;

If the original and the refactored code were indeed equivalent,
then we would expect dim1 and dim2 to have the same value



at the end of both blocks of code. However, this is not the case.
In the original code, dim1 will have width 1 and height 2,
whereas in the refactored code, dim1 will have width 2 and
height 3. This is due to the fact that, in the refactored code,
dim1 and dim2 are aliases. Thus, when dim2 has its size set
to (2,3), this also affects dim1.

Intuitively, any aliases between live variables at the end
of the original code should also be present at the end of
the refactored code. For this purpose, we use the notation
aliasEquivClass(V ) which returns the set of all equivalence
classes induced over the set of variables V by the aliasing
relation. Notably, the aliasing equivalence relation must also
hold over the static fields of the classes loaded by both
programs.

Example 4. For P1 and P2 , there are no aliases. However,
for P3 and P4 we have:

aliasEquivClass(liveVar(P3 ) ∪
staticFields(loadedClasses(P3 )) = ∅
aliasEquivClass(liveVar(P4 ) ∪
staticFields(loadedClasses(P4 )) = {{dim1, dim2}}

In P4 , the aliasing relation induces one equivalence class,
namely {dim1 , dim2}.

Next, we complete Definition 1 by capturing the aliasing
aspect.

Definition 2 (Addition to Definition 1). In addition to Defini-
tion 1, two programs P1 and P2 are equivalent with respect
to i⃗ iff:

(4) ∀v1, v2 ∈ liveVar(P1) ∪ staticFields(loadedClasses(P1)).

aliases(P1, v1, v2) ⇐⇒ aliases(P2, v1, v2)

where, given a program P , variables v1 and v2 are aliases,
i.e., aliases(P, v1, v2) holds if and only if they are in the
same equivalence class induced by the aliasing relation, i.e.,
aliasEquivClass({v1, v2}) = {{v1, v2}}.

We abuse the notation to use staticFields over a set of
classes, rather than just one class. The objective is to return
the union of all static fields defined in all the classes in the
set of classes taken as argument.

III. SEEDING OF THE COMPONENT LIBRARY

In this section, we describe how we populate the instruction
library (also referred to as the component library) used by
the symbolic approach starting from code hints. We’ll refer to
this library as the CodeHints-library. This step is critical as,
in order for the symbolic engine to succeed, the library must
be as small as possible while containing all the instructions
necessary for constructing the solution.

For illustration, let’s go back to the running example in
Figure 1 (with the corresponding Javadoc comment in Figure 2).
As mentioned in Section I, when building the corresponding
component library for this example, we must find the necessary
components that consume existing objects and create a Calendar
object, so that we can call method get as suggested by the code

hint. Besides adding components that allow us to generate the
required objects, we also need components for setting their
fields. In our example, we must call calendar .setTime(date ) to set
the calendar’s date based on the existing date object.

Adding too many components to the library will make the
code generation task infeasible. In particular, we should be
able to differentiate between components that we can use (we
have or we are able to generate all the necessary arguments
and the current object for calling them), and those that we
can’t because we can’t obtain some of the arguments and/or the
current object. Adding the latter components to the library will
significantly slow down the code generation process by adding
infeasible programs to the search space. We address these
challenges by dynamically building the component library for
each refactoring such that it only contains components specific
to that particular use case.

Throughout the seeding process, we keep track of the
following sets: consumable objs (inputs to the code to be
refactored, which need to be consumed by the refactoring),
available types (types for which we either have consumable
objects or the corresponding generators to create them) and
target types (types for which we must be able to generate
objects). To start with, the target types set contains the types
of the original code’s outputs.

For the running example, we start with: consumable objs =
{date}, available types = {Date}, target types = {int}.
The objective of the seeding algorithm is to add components
to the library that make use of the available types to generate
objects of target types . At the same time, we want to consume
the objects from the consumable objs set, i.e., the inputs of
the original code.

The seeding algorithm for the CodeHints-library is provided
in Figure 5 and consists of three phases, which we discuss
next.

a) Phase 1: Initialise with code hints: During the
first phase, the initialisation, we add all the constants and
instructions from the code hints to the library. For our running
example, the hints in Figure 2 instruct us to add method
“ int get ( int field )” from class Calendar and constant “Calendar.
HOUR OF DAY” to our library. As a side note, finding the right
constants is a well known challenge for program synthesis [1],
and thus the subsequent synthesis process will always attempt
to use the constants provided in the code hints before generating
new ones.

Intuitively, we need to make sure that the Javadoc sug-
gestions are realisable as captured by Definition 3, where
required types(method) refers to the types of the objects
required to call method (i.e., the types corresponding to
its arguments and current object). In our running example,
required types(get) = {int, Calendar} given that, in
order to call get, we must provide an argument of type int and
a current object of type Calendar. Method get is not realisable
as the library doesn’t contain any generator for Calendar.
Consequently, Calendar is added to target types , resulting in:
target types = {int, Calendar}.



/ * @deprecated As o f JDK v e r s i o n 1 . 1 ,
* r e p l a c e d by {@code c o n t a i n s ( i n t , i n t ) } .
* /
@Deprecated
p u b l i c boolean i n s i d e ( i n t X, i n t Y) { . . . }

Fig. 4: Javadoc hint example.

Definition 3 (Realisable method). Method i is realis-
able iff ∀t ∈ required types(i).t ∈ available types ∨
t is a primitive type .

One challenge in this phase is interpreting the @code blocks
inside @deprecated sections, which we attempt to parse as Java
expressions. In particular, we parse each hint as if it were
invoked in the context of the method to refactor, such that
imports or the implicit this argument are considered during
parsing.

In order to address the challenge that code hints are
not always expressed as well-formed Java, we customised
the GitHub Java parser to accept undeclared identifiers and
type names as arguments. For instance, the Javadoc hint
for deprecating boolean inside ( int X, int Y) in Figure 4 suggests
using contains ( int , int ), which would normally cause a parsing
error as the int type appears in the place of argument names.
In our setting, we accept this hint as valid. There are still
situations where our parser is too strict and fails to accept
some of the code hints. Additionally, there are scenarios where,
while the Javadoc does contain a useful code hint, it is not
tagged accordingly with the @code tag.

b) Phase 2: Add generators for target types: By
generators we refer to constructors and any other methods
returning objects of that particular type. In the algorithm in
Figure 5, once we added a generator for a new type, we
must add that type to available types . Additionally, if the new
generator consumes any objects from consumable objs , we
must remove them from the set.

For our running example, we must seed our component
library with generators for Calendar. We first scan all the public
constructors of class Calendar and all the public methods from
class Calendar that return an object of type Calendar. We find the
following four options:

1) static Calendar getInstance () – creates the object using the
default time zone and locale.

2) static Calendar getInstance (Locale) – creates the object using
the default time zone and specified locale.

3) static Calendar getInstance (TimeZone) – creates the object
using the specified time zone and default locale.

4) static Calendar getInstance (TimeZone, Locale) – creates the ob-
ject with the specified time zone and locale.

Out of the four methods, only the first one is realisable.
Conversely, in order to call the second method, we would need
to generate an object of type Locale, for which we don’t have a
corresponding component in the library, and the same applies
to the last two methods. Thus, we only add the first method
to the CodeHints-library.

Output: CodeHints-library
// Phase 1: Initialise
Add constants and instructions from the code hints to the

library;
for each unrealisable instruction i in library do

target types = target types ∪ required types(i);
end

// Phase 2: Add generators for target types
for each t ∈ target types for which there is no generator do

Add realisable generators for t to library;
available types = available types ∪ {t};
Remove consumed objs from consumable objs;

end

// Phase 3: Add transformers for target types
while consumable objs ̸= ∅ do

Add realisable transformers to the library for types in
target types that consume objects from
consumable objs;

Remove consumed objs from consumable objs;
end

Fig. 5: Seeding algorithm for the CodeHints-library

c) Phase 3: Add transformers for target types: The
third and last phase adds transformers for the target types.
By transformers we refer to methods that modify the value
of an instance variable. Given our objective to generate
objects for the target types while consuming objects from
consumable objs , we prioritise transformers that consume
such objects. For instance, for our running example there
are 16 public transformers for the Calendar class. However,
instead of adding all of them to the CodeHints-library, we
prioritise those that consume the date object. There is only one
such transformer void setTime(Date date ). Once we added any new
transformers to the library, we remove the consumed objects
from consumable objs .

Notably, all the components that we add to the library must
be accessible from the current location.

It may be the case that there is no realisable generator for a
target type, or no transformers for the target types that can
consume all the consumable objs . When we finish exploring
all the available methods, we exit the corresponding loops in
phases 2 and 3. As a consequence, the synthesiser may fail
to generate a valid refactoring from the CodeHints-library. A
possible future direction is allowing unrealisable generators
and transformers to be added to the library and iterating phases
2 and 3 a given number of times (potentially until reaching a
fixed point).

A. Types-library

For cases when code hints are not provided, in addition to
the CodeHints-library, we also provide a component library that
is populated based only on the type signature of the deprecated
method. Next, we describe how this Types-library is being
built.



For the CodeHints-library, the Javadoc code hints guidance
results in the code hints being used to collect the target types
set during the initialisation phase. If we don’t have access to
code hints and we are seeding solely based on types, we start
with the target types set containing the types of the outputs
of the original code. Phases 2 and 3 of the seeding algorithm
are the same as those in Figure 5, where we attempt to add
generators and transformers for the target types to the library.

Compared to the CodeHints-library, the seeding process for
the Types-library may end up missing critical types provided by
the Javadoc code hints. For instance, in our running example,
the Calendar class is only mentioned by the code hints and
would not be included in the seeding of the Types-library.
One possibility for adding Calendar to the target types without
considering the Javadoc hints, would be to add all the classes
from the java . util package, which contains Date. However, doing
so would result in a very large component library, most likely
outside the capabilities of existing synthesis techniques.

IV. DESIGN AND IMPLEMENTATION CHOICES

A. Abstract classes and interfaces

The programs that need to be checked for equivalence
may refer to abstract classes and interfaces. These are by
default instantiated using the mocking framework Mockito.
Alternatively, we also curate a list of explicit constructors of
subclasses to be used in favour of Mockito mocks for certain
types, and users have the option to extend this list with a custom
configuration. This is particularly useful when attempting to
avoid constructors that are not amenable to fuzzing, such as
collection constructors that take an integer capacity argument,
where an unlucky fuzzed input might lead to an out of memory
error.

B. Observable state

Our equivalence check uses the Java Reflection API to
observe the side effects of programs, such as assigning new
values to fields. As a consequence, we cannot observe effects
that are not visible through this API, such as I/O operations
or variables maintained in native code only. I/O operations
could be recorded using additional bytecode instrumentation in
future work, but for the scope of our current implementation,
if programs only differ in such side effects, our engine is prone
to producing a refactoring that it’s not fully equivalent to the
original.

C. Instrumentation and isolation

We use reflection to invoke the original method to refactor
with fuzzed inputs, as well as our synthesised refactoring can-
didates. This allows us to dynamically invoke new candidates
without the need for compilation. Regarding static fields, Java
allows to load the same class in different class loaders, which
creates independent copies of its static fields.

In order to fully isolate the program state during the
execution of the original and refactored code from each other,
we load all involved classes in separate class loaders. These
class loaders are disposed immediately after the current set of

fuzzed inputs are executed, and new class loaders are created
for the next inputs. Classes that do not maintain a static state are
loaded in a shared parent class loader to improve performance.

The OpenJDK Java virtual machine implementation does
not allow us to load classes contained in the java . lang package
in such an isolated class loader. For such classes we cannot
apply refactorings that depend on static fields, as they cannot
be reset and will retain the state of previous executions. Instead
of observing the effect of one isolated refactoring candidate,
we would observe their accumulated effect, which would be
incorrect. For the scope of our experiments this did not pose
a problem, since most of the affected classes in the java . lang
package do not maintain a static state, and the ones who do
were irrelevant to our refactorings.

D. Checking aliasing

While in Section II-C, we discussed aliasing preservation
in terms of preserving the equivalence classes induced by
the aliasing relation, in our implementation we enforce a
simpler but stricter than necessary check. In particular, all the
objects that are being referenced during the code’s execution
are assigned increasing symbolic identifiers. Then, we enforce
aliasing preservation (condition (4) in Definition 2), by checking
that, for all variables defined by both the original and the
refactored code, the objects they reference have the same
symbolic id.

For illustration, in the original code in Example 3, the object
of type Dimension referenced by variable dim1 is assigned
symbolic value s1 , whereas the object referenced by dim2 is
assigned symbolic value s2 . In a similar manner, the object
referenced by both dim1 and dim2 in the refactored code is
assigned value s1 . Then, the aliasing check fails as, in the
original code, the object referenced by dim2 has symbolic
value s2 , whereas, in the refactored code, the object referenced
by dim2 has symbolic value s1 . While this is a stronger
than needed requirement, it was sufficient for our experiments.
In particular, we didn’t find any benchmark where a sound
refactoring was rejected due to it.

V. EXPERIMENTAL EVALUATION

We implemented the refactoring generation techniques in
two tools called REFSYM and REFNEURAL, corresponding to
the symbolic and the neural approach, respectively (available
together with all the experiments at https://github.com/pkesseli/
refactoring-synthesis/tree/hanliang/dev).

A. Experimental setup

Our benchmark suite contains 236 out of 392 deprecated
methods in the Oracle JDK 15 Deprecated API documen-
tation [20]. We included all the deprecated methods except
those that were deprecated without a replacement (e.g. java .rmi
. registry . RegistryHandler . registryImpl ( int )), methods inaccessible
by non-JCL classes (i.e., all the finalize methods, which are
called by the garbage collector, not user code, meaning that
we can’t modify their calls), methods that only perform I/O (as

https://github.com/pkesseli/refactoring-synthesis/tree/hanliang/dev
https://github.com/pkesseli/refactoring-synthesis/tree/hanliang/dev


our equivalence check doesn’t include I/O side effects), and
native methods.

For REFNEURAL, we use Claude 2.1 and Claude 3, denoted
as REFNEURAL-Claude2.1 and REFNEURAL-Claude3, respec-
tively. Claude 2.1 and Claude 3 are proprietary LLMs likely to
be very large (1T+ parameters), which have been shown to be
among the highest performing on coding tasks [23], [24], [25],
[26]. We accessed the LLMs via Amazon Bedrock. To make
our results more deterministic, we use a lower temperature
(i.e. less random) of 0.2. We also repeated the experiments
three times, and the results are summarized as averages. For
all engines, we bound the search by at most 500 inputs and
5 minutes per verification phase, and at most 2 minutes per
synthesis phase.

Experiments were performed on an Ubuntu 22.04 x64
operating system running in a laptop with 16 GB RAM and
11th Gen Intel Core i7-11850H at 2.50 GHz. The JVM used
was Oracle JDK 15.02.

For REFSYM, if code hints are present, we start with the
CodeHints-library and fall back to the Types-library if the
synthesis phase (as described in Section II-A) times out for
the CodeHints-library; if no code hints exist then we use the
Types-library.

B. Results

Configuration ✓ ✗ � % � runtime (s)
REFSYM 7 82 16 6 213.7
REFNEURAL-Claude2.1 12 91 2 11 197.14
REFNEURAL-Claude3 10 93 2 9 203.32
Best Virtual Engine 15 77 13 14 195.9
REFSYM (CH) 104 19 8 79 220.8
REFNEURAL-Claude2.1 (CH) 93.3 36.7 1 71 212.19
REFNEURAL-Claude3 (CH) 94 36 1 72 217.9
Best Virtual Engine (CH) 107 13 11 82 210.28

TABLE I: Experimental results for all benchmarks.

Table I provides an overview of the number of sound
refactorings (✓), missed refactorings (✗), unsound refactorings
(�), the percentage of sound refactorings (%) produced per
configuration, as well as the average runtime per refactoring.
For the symbolic engine, refactorings are guaranteed to compile
so missed refactorings are those that failed our equivalence
check, whereas for the neural engine, they either didn’t compile
or failed the equivalence check. Unsound refactorings are those
that passed the equivalence check, but were manually detected
by us as not being equivalent to the original code. We describe
the reasons why this can happen later in this section. The
average runtime includes both the time to generate a refactoring
and to verify it.

We split our dataset into benchmarks where code hints could
be extracted from the Javadoc, and benchmarks without code
hints. The first four rows provide the results for benchmarks
without code hints, whereas the last four (marked with “(CH)”)
show the results for those benchmarks where code hints were
present. The rows denoted by “Best Virtual Engine” count all
benchmarks (with and without code hints, respectively) solved
by at least one engine.

The results support our hypothesis that code hints are very
valuable for automating the refactoring process. For all engines,
benchmarks with code hints have a considerably higher success
rate than those without code hints, with the best virtual engine
solving 82% of the benchmarks with code hints. In the absence
of code hints, all the engines are struggling, solving only a
few benchmarks.

To understand the discrepancy between the number of
missed/unsound refactorings with the without code hints, we
next investigate the main reasons for such refactorings.

a) Missed refactorings: For the symbolic engine, the
majority of the missed refactorings were due to fuzzing
timeouts, which are likely caused by the component libraries
missing some instructions needed in the synthesis phase. As
explained in Section III, one option for increasing the size of our
libraries is allowing unrealisable generators and transformers
to be added.

For the neural approach, we could only observe that the
LLMs were unable to generate the refactoring from the provided
prompt.

For both engines, when refactoring methods that eventually
run native code, we encountered crashes of the verifier, which,
in order to be conservative, we counted as overall missed
refactorings. The reason for this is the fact that we use reflection
to produce counterexamples, and some may violate internal
invariants. If they execute methods that eventually call native
code, this can lead to the entire JVM crashing rather than e.g.
throwing an exception.

b) Unsound refactorings: In several cases, refactorings
that are not equivalent to the original code managed to pass our
verifier. While we expected to run into this problem because of
the nature of fuzzing (the fuzzer may miss counterexamples that
distinguish the behaviour of the original from the refactored
code), we also encountered other problems:

Unobservable state (discussed in Section IV-B): I/O opera-
tions, static state in the boot class loader and native methods are
not observable by our equivalence predicate implementation,
since we rely on reflection to examine objects inside the Java
runtime. As a consequence, we cannot distinguish programs
that only differ in these aspects.

Abstract methods: There are classes in the JCL without any
existing implementation (e.g. javax .swing. InputVerifier ), and thus
no concrete method against which to verify the equivalence
between the original and the refactored code. For those, the
symbolic engine will generate a no-op. We’ve been very
conservative here, and counted this scenario as “unsound”
because it doesn’t match human intent for the deprecated
method.

Insufficient counterexamples: Our fuzzing-based equivalence
check is inherently incomplete, and for some benchmarks we do
not explore sufficient counterexamples to identify unsound can-
didates. An example is javax .swing.JViewport#isBackingStoreEnabled,
where only a single input out of the 232 − 1 possible input
values will trigger an alternate code path. As a second exemplar,
method java .rmi. server .RMIClassLoader#loadClass accepts a string
as an input, but will throw when given any string that is not



a valid class name. It is very unlikely that our fuzzer will
randomly produce a string that matches a valid class name.

c) Discussion: The symbolic engine benefits significantly
from code hints, as hints seed the component library, making it
less likely that needed instructions are missing. For the neural
engine, we hypothesise that, by providing additional context
to the LLM, code hints are aiding the code generation task.

Benchmarks with code hints also have fewer unsound results.
Our hypothesis is that both engines are much more likely
to generate the expected refactoring before generating other
candidate refactorings that may trick our equivalence checker.

C. Research questions

(RQ1) Can the refactoring of deprecated Java APIs
be automated? Yes, it can be automated if code hints are
added to the JDK, evidenced by the 82% success rate for those
benchmarks. Without code hints, Java’s complexity makes these
refactorings very hard for both for the symbolic and neural
engines.
(RQ2) Do code hints help the generation of refactorings?
The performance of REFSYM, REFNEURAL-Claude2.1 and
REFNEURAL-Claude3 improves considerably when code hints
are present. All of them barely manage to solve any benchmark
without code hints. When code hints are present, all engines
solve at least 71% of benchmarks, with the best virtual engine
solving 82%. For the symbolic engine, they enable the effective
seeding of the instruction library, whereas for the neural engine,
they provide additional context to the LLM.
(RQ3) How do the symbolic and the neural approach
compare against each other? The symbolic and the neural
engines have very similar performance (where the symbolic
engine has a smaller monetary cost).

When code hints are present, as shown in Table I, the
symbolic approach does slightly better than both REFNEU-
RAL-Claude2.1 and REFNEURAL-Claude3. This supports the
intuition that, if there is enough information about the solution
to effectively prune the solution space (in our case, when code
hints are present), then the symbolic approach works well.
One example of a benchmark that was solved by REFSYM but
where both REFNEURAL-Claude2.1 and REFNEURAL-Claude3
failed to find a solution is the running example in Figure 1. In
all our runs, the LLMs failed to generate calendar .setTime(date ).

When code hints are not present, the neural engine does
marginally better than the symbolic approach. Compared
to the symbolic engine, the neural one is able to provide
correct refactorings for deprecated concurrency primitives (e.g.,
weakCompareAndSet in java . util . concurrent .atomic.AtomicReference).
These methods call native methods, for which we cannot
observe side-effects (Section IV-B). Consequently, these are
not captured by the counterexamples returned by the fuzzer,
and are thus not taken into consideration by the symbolic
engine during the synthesis phase. For the neural approach, the
counterexamples are less critical, and the LLM can obviously
generate the correct code even though they are incomplete.

The neural engine is also able to handle benchmarks that
require special constants, such as java . net .URLDecoder.decode(s)
described in the introduction.

VI. THREATS TO VALIDITY

a) Selection of benchmarks: All our benchmarks are
Java methods deprecated in the Oracle JDK 15. The JDK
is extremely well known to Java developers, and a lot of Java
application code evolves similarly. However, our claims may
not extend to other programming languages.

b) Quality of refactorings: Refactorings need to result
in code that remains understandable and maintainable. It is
difficult to assess objectively how well our technique does with
respect to this subjective goal. This threatens our claim that
refactoring of deprecated Java APIs be automated.

We manually inspected the refactorings obtained with both
engines and found them to represent sensible transformations.

c) Efficiency and scalability of the program synthesiser:
We apply program synthesis and fuzzing. This implies that
our broader claim is threatened by scalability limits of these
techniques. While for the majority of our experiments the
synthesiser was able to find a solution, there were a few cases
where it timed out, either because it could not generate a
candidate, or it could not verify it. Component libraries with a
diverse range of component sizes may help mitigate this effect.

d) Prompt engineering for Claude: In our current experi-
ments, we engineered prompts for the Claude LLMs. While we
made best efforts to follow the official prompt engineering
guidelines2, which presents prompt design techniques to
improve model performance, there might be better ways of
composing it. This might invalidate our claim that the symbolic
and neural techniques deliver roughly the same performance.

VII. RELATED WORKS

a) Program refactoring: We first discuss works on the
refactoring of deprecated instances. The work of Perkins di-
rectly replaces calls to deprecated methods by their bodies [27],
but we argue this conflicts with the intent of language designers.
Moreover, it can introduce concurrency bugs as inlining calls
to deprecated methods can cause undesirable effects if the
original function was synchronised. While it is not possible
for two invocations on the same object of the synchronised
original method to interleave, this is not guaranteed after
inlining the method’s body. Notably, the authors of [28] show
how refactorings in concurrent programs can inadvertently
introduce concurrency issues by enabling new interactions
between parallel threads.

A related class of techniques aim to adapt APIs after library
updates. Such techniques automatically identify change rules
linking different library releases [29], [30]. Conversely to
our work, a change rule describes a match between methods
existing in the old release, but which have been removed or
deprecated in the new one, and replacement methods in the
new release. However, they do not provide the actual refactored

2https://docs.anthropic.com/en/docs/prompt-engineering



code. In [31], Lee et al. address the problem of outdated APIs
in documentation references. Their insight is that API updates
in documentation can be derived from API implementation
changes between code revisions. Conversely, we are looking at
code changes, rather than documentation. Other works focus
on automatically updating API usages for Android apps based
on examples of how other developers evolved their apps for the
same changes [32], [33]. Furthermore, [34] improves on [33]
by using a data-flow analysis to resolve the values used as API
arguments and variable name denormalization to improve the
readability of the updated code. As opposed to these works,
which rely on examples of similar fixes, our approach uses
Javadoc code hints.

There are several rule-based source-to-source transformation
systems that provide languages in which transformation rules
based on the program’s syntax can be expressed [35], [36]. As
opposed to our work, such systems require the user to provide
the actual transformation rules.

Search-based approaches to automating the task of software
refactoring, based on the concept of treating object-oriented
design as a combinatorial optimisation problem, have also been
proposed [37], [38]. They usually make use of techniques such
as simulated annealing, genetic algorithms and multiple ascent
hill-climbing. While our technique is search based, the search
is guided by types, code hints, as well as counterexamples,
discovered by testing.

Closer to our work, several refactoring techniques
make explicit use of some form of semantic information.
Khatchadourian et al. use a type inference algorithm to automat-
ically transform legacy Java code (pre Java 1.5) to use the enum
construct [39]. Other automated refactoring techniques aim
to transform programs to use a particular design pattern [40],
[41]. Steimann et al. present Constraint-Based Refactoring [42],
[43], [44], where given well-formedness logical rules about the
program are translated into constraints that are then solved to
assist the refactoring. Fuhrer et al. implement a type constraint
system to introduce missing type parameters in uses of generic
classes [45] and to introduce generic type parameters into
classes that do not provide a generic interfaces despite being
used in multiple type contexts [46]. Kataoka et al. use program
invariants (found by the dynamic tool Daikon) to infer whether
specific refactorings are applicable [47]. Finding invariants
is notoriously difficult. Moreover, the technique is limited
to a small number of refactorings and does not include the
elimination of deprecated instances. In [48], Gyori et al. present
the tool LAMBDAFICATOR, which automates two pattern-based
refactorings. The first refactoring converts anonymous inner
classes to lambda expressions. The second refactoring converts
for loops that iterate over Collections to functional operations
that use lambda expressions. The LAMBDAFICATOR tool [49]
is available as a NetBeans branch.

Our techniques does not expect any precomputed information
such as logical well-formedness properties or invariants. Instead,
we make use of information that is already available in
the original program and Javadoc, namely code hints and
type information. Moreover, we explore the space of all

potential candidate programs by combining techniques from
type-directed, component-based and counterexample-guided
inductive synthesis.

b) Symbolic program synthesis: CEGIS-based approaches
to program synthesis have been previously used for program
transformations such as superoptimisation and deobfusca-
tion [2]. In [50], David et al. present an automatic refactoring
tool that transforms Java with external iteration over collections
into code that uses Streams. Their approach makes use of
formal verification to check the correctness of a refactoring.
Cheung et al. describe a system that transforms fragments of
application logic into SQL queries [51] by using a CEGIS-based
synthesiser to generate invariants and postconditions validating
their transformations (a similar approach is presented in [52]).
While our approach is also CEGIS-based, we are guided by
code hints and types to efficiently prune the search space.

Type information has been extensively used in program
synthesis to guide the search for a solution [5], [53], [6], [54],
[7]. In our work, we combine type information with code hints.
Another direction that inspired us is that of component-based
synthesis [2], [3], [4], where the target program is generated
by composing components from a library. Similarly to these
approaches, we use a library of components for our program
generation approach. However, our technique uses information
about types and code hints to build the component library,
which is specific to each refactoring.

c) Large Language Models: LLMs have been used suc-
cessfully for code generation tasks, with applications ranging
from code completions [12], [14], [13], [17], translations [55],
[16] to repository-level generation [15] and general software en-
gineering tasks [18]. Those models are typically pre-trained on
vast amounts of data, fine-tuned for specific tasks, and require
advanced prompt engineering [56]. Among the well-known
LLMs, GPT-4 [57], Claude2.1 [19], Claude3 [19], LLaMa [58]
are general-purpose models covering a diverse set of language-
related applications; there are also models pre-trained/fine-tuned
specifically for code generation and programming tasks, such
as CodeLLaMa2 [59], StarCoder2 [60], DeepSeek-Coder [61],
and GrammarT5 [62]. In this work, we have applied the Claude
family of LLMs to our refactoring task, with the goal of
investigating how much it benefits from Javadoc code hints.

VIII. CONCLUSIONS

In this paper, we investigated the benefits of Javadoc
code hints when refactoring deprecated methods. For this
purpose, we designed and implemented a symbolic and a
neural automatic program refactoring techniques that eliminate
uses of deprecated methods. In our experiments, both engines
demonstrate strong performance when code hints were present,
and fare much worse otherwise, leading us to conclude that
code hints can boost the automation of refactoring code that
uses deprecated Java APIs.
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